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J .  P H Y S .  x ( G E N .  P H Y S . ) ,  1 9 6 9 ,  S E R .  2 ,  VOL. 2 .  P R I N T E D  I N  G R E A T  B R I T A I N  

A new approach to the inverse diffraction problem7 

8. LALOR 
Department of Physics and Astronomy, 'University of Rochester, Rochester, New 
York, U.S.A. 
MS. receizied 15th July 1968,  in revised form 2 0 t h  September 1968 

Abstract. In recent studies of the inverse diffraction problem, i.e. the problem of 
recovering the field distribution in the plane z = z1 2 0 from a knowledge of the 
field in an arbitrary plane z = z2 > z1 in the half-space z 3 0 into which the field 
is propagated, a solution was sought in the form of a linear integral transform. In 
this paper a different approach is employed and a formal solution is obtained in terms of 
a differential rather than an integral operator. A useful representation for the differ- 
ential operator, which is valid for fields whose spatial frequency spectrum is band- 
limited to a circle whose radius is equal to the wave number of the field, is also given. 

1. Introduction 
The inverse diffraction problem, i.e. the problem of recovering the field distribution in 

the plane x = x1 z 0 from a knowledge of the field in an arbitrary plane z = x2 > x1 
in the half-space x 2 0 into which it is propagated, has been considered recently by several 
authors (Wolf and Shewell 1967, Sherman 1967, Lalor 1968 a, b, Shewell and Wolf 
1968). It may be shown to be equivalent to the problem of inverting the well-known 
Rayleigh diffraction integral 

where xz  > x1 
Y = {(XL -x2)2+(y1-y2)Z+(x'-x2)2}1'2 

and the integration is carried out over the plane x1 = constant. The  solution to this problem 
may formally be expressed in the form 

where l (x l ,  y1 z1 ; x2, y2,  x2) is a linear operator. Hitherto, a solution has been sought in 
the form of an integral transform 

qx17y1, x1) = U(x2,y2, 2.2)K(x,,y,, 2.1; X 2 , Y 2 , % )  dxz dy2 
- m  17 

with K(xl, y l ,  xl; x2, y2, x2) being a suitable kernel. This approach has led to a solution 
of the problem under rather general conditions. 

in (1.2) 
as a differential rather than an integral operator. 

2. Operational calculus: 

This paper describes an alternative approach which leads to an expression for 

Consider the convolution transform 
m 

f(X, y )  = j j G ( x  - s, y - tW(s, 4 ds dt (2.1) 
- m  

t Research supported by the U.S. Air Force Office of Scientific Research (Office of Aerospace 
Research). 

$ I t  is clear that in this section our formal analysis ignores questions of rigour, particularly those 
relating to the existence and uniqueness of the inversion process described by equation (2.5) et seq. 
In this connection see Hirschman and Widder (1955)  and Jones (1966,  3 10.4, 5 7.7, 5 8.7 e t  seq.). 
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or in standard notation 
f(x,  y )  = G(x,y)*+(x, Y ) .  

The convolution theorem of Fourier transform theory states that 

where 6(p, q) is the Fourier transform of G(x, y) defined as follows: 

G(p, q) = ( (G(x, y) exp( - i(px + qy)) dx dy 
J J  
- x  

and $(p, q) is the Fourier transform of +(x, y ) ,  defined in a similar way. 
Let us define the function 

and let us apply to both sides of (2.3) the operatort I?( -ii./ax, -i;/ay). To  operate with 
I?( -ia/ax, -ia/ay) we expand it in a power series in which the derivatives are treated as 
algebraic quantities, then put ( = an/&? etc. and operate with the derivatives term 
by term. Upon carrying out this operation and taking the derivatives inside the integral on 
the right-hand side we obtain 

m 

Equation (2.6) may be simplified to give 

= +(X> Y )  
where the last step is obtained with the help of the Fourier inversion theorem. We have 
thus formally inverted the convolution transform and obtained a solution in the form 

3. The inversion of the Rayleigh transform 
The Rayleigh transform (1.1) is a convolution transform of the form (2.1), with 

U(x,,  y2 ,  z2) = f ( x ,  y )  
Wx17y1, z1) 5 +(s, t )  

where x2 = x, yz = y 
where x1 = s, y1 = t 

(3 .1 )  
( 3 4  

and 

1 a e x p [ i k { ( x - - ~ ) ~ + ( y - t ) ~ + ( ~ ~ - ~ ~ ) ~ } ~ ~ ~ ]  -- G(x-s,y-t). (3.3) 
2T a d  {(x - s)2 + ( y  - t)2 + (2’ - z2)2)1!2 2’= z1 

f The opwutor $( - i Z /  Zx, - i e /  Ey) has the same functional form in terms of - i Z 1  ax and - i a/ ay 
as the function E(p ,  q) has in terms of p and q,  
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The Fourier transform G(p,  q) of the function G given by (3.3) may readily be calculated 
and is found to be (cf. Lalor 1968c) 

G ( p ,  q)  = exp{i(x, - " ~ ~ 2 2  -p2 - q2)1 '2 )  (3.4) 
where the positive square root is implied. Thus in this case the operator i? becomes 

(3.5) 

The solution to the inverse diffraction problem equation (1.2) may therefore be expressed 
in the form 

exp[-i(z,-z,) U ( X , Y , X ~ )  = U ( x , y , z l ) ,  forx2 > xl. (3.6) 

It is of interest to note that the solution to the original diffraction problem may be 
expressed in a similar form. For, if we operate on both sides of equation (3.6) with the 
operator 

+i(z2-z1) k 2 + - + -  ( 2x2 a2 ay2 az)1'21 
we obtain 

(3.7) 

This is an alternative form of the solution to the direct diffraction problem, given by the 
Rayleigh formula equation (1.1). 

Equation (3.7) appears to have been derived first by Bremmer (1952, 1959), using a 
different approach. However, the solution for the inverse diffraction problem in the 
form (3.6) appears to be new. 

Equations (3.6) and (3.7) express the solutions in a rather formal way. We will show, in 
the next section, that for a wide class of fields, the above solutions may be expressed in a 
more explicit form. 

4. The non-evanescent wave field 
Under rather general conditions it is possible to represent the field as an angular spectrum 
of plane waves (see, for instance, Bouwkamp 1954, Lalor 1 9 6 8 ~ ) :  

U ( x , y , x )  = i_k_-)2JSB(P,~)exp{iF2(px+~y+lnz)dpdq, for2  2 0 (4.1) 
53 

- x  
2T 

where 
m = (1 -p2 - q2)1 ;2  if p 2 + q 2  < 1 

= +i(p2+q2- 1)1'2 if p 2 + q 2  2 1 
and A@, q) in the Fourier transform of the field in the plane z = 0, i.e. 

m 

4, 9) = J S U ( x ,  Y, 0) exp{- ik(px+ qy)) dx dy 
- - r  

Real values of m are seen to be associated with homogeneous plane waves and imaginary 
values with evanescent waves. In  this section we shall consider fields which contain no 
evanescent waves. We will call such fields non-evanescent wave$eZds. Sherman (1968 a, b) and 
Shewelland Wolf (to bepublished) have discovered some interesting properties of these fields. 
Sherman calls them 'source-free fields' for such fields have no sources anywhere (including 



A new approach to the inverse diffraction problem 23 9 

infinity). It is readily seen that the non-evanescent wave field contains no spatial periodici- 
ties (in the sense of Shewell and Wolf 1968), smaller than the wavelength of the radia- 
tion, in any plane x = xl. However, since the evanescent waves, which carry information 
about details smaller than the wavelength, are rapidly damped out, particularly at optical 
frequencies, one might expect that the non-evanescent wave field would provide a good 
approximation to the total field for most cases of practical interest. We see from (4.1) that 
a non-evanescent wave field may be represented in the form 

LrNE(x, y ,  x) = (!-I2 / / A @ ,  q)  exp[ik{px+ qy + (1 -p2 - 42)1!2x)] dp dq. (4.2) 2n 
p ? +  aec1 

T o  find a representation for the differential operators in (3.6) and (3.7) we make use of the 
expansions (cf. Watson 1944T) 

and 

exp{ - ix(a2 - b2)l l2)  = (&mz)li2 
I1 = 0 

These expansions are valid provided that Ib] < ]al .  H(A)-+ and H(E)-6 are the Hankel 
functions of the first and second kind respectively, of order n - +. 

Thus we may rewrite equations (3.6) and (3.7) as 

and 

respectively, where we have substituted A, = a2/ax2+ a2/ay2 for - b2 in equation (4.3). 
Azn is, of course, to be interpreted as the operator resulting from the application of the 
operator A2, n times in succession. The correctness of equations (4.4) and (4.5) may readily 
be verified for wave fields that are non-evanescent. For this purpose one expresses the fields 
in the form (4.2) and takes the operator inside the integral sign on the right-hand side. 
Further, one makes use of the fact that since the x and y dependence in the integrand is 
entirely in the exponent, the result of the operation is to replace A, by - k2(p2 + q2) ,  when- 
ever it appears. Since1 p2 + q2 < 1 the series appearing in the integrand may be summed 
and gives T ik(1 -p2 - q2)lt2(z2 - zl), the negative sign referring to equation (4.4) and the 
positive sign to equation (4.5). 

Equation (4.5) for direct diffraction was first obtained by Bremmer (1932) and recently 
derived in a different way by Sherman (1968 b). Equation (4.4), which represents a 
solution to the inverse diffraction problem, appears to be new. 

The remarkable symmetry between the solutions to the direct and inverse diffraction 
problems for non-evanescent fields, given by our equations (4.5) and (4.4), is just as 
apparent in the integral transform approach of Wolf and Shewell (1967). The reciprocity 
theorem of Shewell and Wolf (1968) for non-evanescent wave fields may immediately 
be verified from equations (4.4) and (4.5). 

Equations (4.3) may be deduced in a straightforward manner from (3 )  and (4) of 5 5 . 2 2  of this 
reference. 

t This corresponds to the condition lbl < ,a1 of equation (4.3). 
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